
Practice Solutions

Introduction to Oracle9i: SQL A-3

Practice 1 Solutions

1. Initiate an iSQL*Plus session using the user ID and password provided by the instructor.

2. iSQL*Plus commands access the database.

False

3. The following SELECT statement executes successfully:

True

SELECT last_name, job_id, salary AS Sal

FROM employees;

4. The following SELECT statement executes successfully:

True

SELECT *
FROM job_grades;

5. There are four coding errors in this statement. Can you identify them?

SELECT employee_id, last_name
sal x 12 ANNUAL SALARY
FROM employees;

– The EMPLOYEES table does not contain a column called sal. The column is called
SALARY.

– The multiplication operator is *, not x, as shown in line 2.

– The ANNUAL SALARY alias cannot include spaces. The alias should read
ANNUAL_SALARY or be enclosed in double quotation marks.

– A comma is missing after the column, LAST_NAME.

6. Show the structure of the DEPARTMENTS table. Select all data from the DEPARTMENTS table.

DESCRIBE departments

SELECT *
FROM departments;

7. Show the structure of the EMPLOYEES table. Create a query to display the last name, job code,

hire date, and employee number for each employee, with employee number appearing first. Save
your SQL statement to a file named lab1_7.sql.

DESCRIBE employees

SELECT employee_id, last_name, job_id, hire_date
FROM employees;

Introduction to Oracle9i: SQL A-4

Practice 1 Solutions (continued)

8. Run your query in the file lab1_7.sql.

SELECT employee_id, last_name, job_id, hire_date
FROM employees;

9. Create a query to display unique job codes from the EMPLOYEES table.

SELECT DISTINCT job_id
FROM employees;

If you have time, complete the following exercises:

10. Copy the statement from lab1_7.sql into the iSQL*Plus Edit window. Name the column

headings Emp #, Employee, Job, and Hire Date, respectively. Run your query again.

SELECT employee_id "Emp #", last_name "Employee",
job_id "Job", hire_date "Hire Date"

FROM employees;

11. Display the last name concatenated with the job ID, separated by a comma and space, and name the
column Employee and Title.

SELECT last_name||', '||job_id "Employee and Title"
FROM employees;

If you want an extra challenge, complete the following exercise:

12. Create a query to display all the data from the EMPLOYEES table. Separate each column by a

comma. Name the column THE_OUTPUT.

SELECT employee_id || ',' || first_name || ',' || last_name
|| ',' || email || ',' || phone_number || ','|| job_id
|| ',' || manager_id || ',' || hire_date || ',' ||
salary || ',' || commission_pct || ',' || department_id
THE_OUTPUT

FROM employees;

Introduction to Oracle9i: SQL A-5

Practice 2 Solutions

1. Create a query to display the last name and salary of employees earning more than $12,000.
Place your SQL statement in a text file named lab2_1.sql. Run your query.

SELECT last_name, salary
FROM employees
WHERE salary > 12000;

2. Create a query to display the employee last name and department number for employee number

176.

SELECT last_name, department_id
FROM employees
WHERE employee_id = 176;

3. Modify lab2_1.sql to display the last name and salary for all employees whose salary is not in

the range of $5,000 and $12,000. Place your SQL statement in a text file named lab2_3.sql.

SELECT last_name, salary
FROM employees
WHERE salary NOT BETWEEN 5000 AND 12000;

4. Display the employee last name, job ID, and start date of employees hired between February 20,

1998, and May 1, 1998. Order the query in ascending order by start date.

SELECT last_name, job_id, hire_date

FROM employees

WHERE hire_date BETWEEN '20-Feb-1998' AND '01-May-1998'

ORDER BY hire_date;

Introduction to Oracle9i: SQL A-6

Practice 2 Solutions (continued)

5. Display the last name and department number of all employees in departments 20 and 50 in

alphabetical order by name.

SELECT last_name, department_id
FROM employees
WHERE department_id IN (20, 50)
ORDER BY last_name;

6. Modify lab2_3.sql to list the last name and salary of employees who earn between $5,000 and

$12,000, and are in department 20 or 50. Label the columns Employee and Monthly Salary,

respectively. Resave lab2_3.sql as lab2_6.sql. Run the statement in lab2_6.sql.

SELECT last_name "Employee", salary "Monthly Salary"
FROM employees
WHERE salary BETWEEN 5000 AND 12000
AND department_id IN (20, 50);

7. Display the last name and hire date of every employee who was hired in 1994.

SELECT last_name, hire_date
FROM employees
WHERE hire_date LIKE '%94';

8. Display the last name and job title of all employees who do not have a manager.

SELECT last_name, job_id
FROM employees
WHERE manager_id IS NULL;

9. Display the last name, salary, and commission for all employees who earn commissions. Sort

data in descending order of salary and commissions.

SELECT last_name, salary, commission_pct
FROM employees
WHERE commission_pct IS NOT NULL
ORDER BY salary DESC, commission_pct DESC;

Introduction to Oracle9i: SQL A-7

Practice 2 Solutions (continued)

If you have time, complete the following exercises.

10. Display the last names of all employees where the third letter of the name is an a.

SELECT last_name
FROM employees
WHERE last_name LIKE '__a%';

11. Display the last name of all employees who have an a and an e in their last name.

SELECT last_name
FROM employees
WHERE last_name LIKE '%a%'

AND last_name LIKE '%e%';

If you want an extra challenge, complete the following exercises:

12. Display the last name, job, and salary for all employees whose job is sales representative or stock

clerk and whose salary is not equal to $2,500, $3,500, or $7,000.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id IN ('SA_REP', 'ST_CLERK')

AND salary NOT IN (2500, 3500, 7000);

13. Modify lab2_6.sql to display the last name, salary, and commission for all employees whose

commission amount is 20%. Resave lab2_6.sql as lab2_13.sql. Rerun the statement in

lab2_13.sql.
.

SELECT last_name "Employee", salary "Monthly Salary",
commission_pct

FROM employees
WHERE commission_pct = .20;

Introduction to Oracle9i: SQL A-8

Practice 3 Solutions

1. Write a query to display the current date. Label the column Date.

SELECT sysdate "Date"
FROM dual;

2. For each employee, display the employee number, last_name, salary, and salary increased by 15%
and expressed as a whole number. Label the column New Salary. Place your SQL statement in a

text file named lab3_2.sql.

SELECT employee_id, last_name, salary,
ROUND(salary * 1.15, 0) "New Salary"

FROM employees;

3. Run your query in the file lab3_2.sql.

SELECT employee_id, last_name, salary,
ROUND(salary * 1.15, 0) "New Salary"

FROM employees;

4. Modify your query lab3_2.sql to add a column that subtracts the old salary from

the new salary. Label the column Increase. Save the contents of the file as lab3_4.sql. Run

the revised query.

SELECT employee_id, last_name, salary,
ROUND(salary * 1.15, 0) "New Salary",
ROUND(salary * 1.15, 0) - salary "Increase"

FROM employees;

5. Write a query that displays the employee’s last names with the f irst letter capitalized and all other

letters lowercase and the length of the name for all employees whose name starts with J, A, or M.

Give each column an appropriate label. Sort the results by the employees’ last names.

SELECT INITCAP(last_name) "Name",
LENGTH(last_name) "Length"

FROM employees
WHERE last_name LIKE 'J%'
OR last_name LIKE 'M%'
OR last_name LIKE 'A%'
ORDER BY last_name;

Introduction to Oracle9i: SQL A-9

Practice 3 Solutions (continued)

6. For each employee, display the employee’s last name, and calculate the number of months between
today and the date the employee was hired. Label the column MONTHS_WORKED. Order your results

by the number of months employed. Round the number of months up to the closest whole number.

Note: Your results will differ.

SELECT last_name, ROUND(MONTHS_BETWEEN
(SYSDATE, hire_date)) MONTHS_WORKED

FROM employees
ORDER BY MONTHS_BETWEEN(SYSDATE, hire_date);

7. Write a query that produces the following for each employee:
<employee last name> earns <salary> monthly but wants <3 times

salary>. Label the column Dream Salaries.

SELECT last_name || ' earns '
|| TO_CHAR(salary, 'fm$99,999.00')
|| ' monthly but wants '

|| TO_CHAR(salary * 3, 'fm$99,999.00')
|| '.' "Dream Salaries"

FROM employees;

If you have time, complete the following exercises:

8. Create a query to display the last name and salary for all employees. Format the salary to be 15
characters long, left-padded with $. Label the column SALARY.

SELECT last_name,

LPAD(salary, 15, '$') SALARY
FROM employees;

9. Display each employee’s last name, hire date, and salary review date, which is the first Monday after
six months of service. Label the column REVIEW. Format the dates to appear in the format similar to

“Monday, the Thirty-First of July, 2000.”

SELECT last_name, hire_date,
TO_CHAR(NEXT_DAY(ADD_MONTHS(hire_date, 6),'MONDAY'),

'fmDay, "the" Ddspth "of" Month, YYYY') REVIEW
FROM employees;

10. Display the last name, hire date, and day of the week on which the employee started. Label
the column DAY. Order the results by the day of the week starting with Monday.

SELECT last_name, hire_date,
TO_CHAR(hire_date, 'DAY') DAY

FROM employees
ORDER BY TO_CHAR(hire_date - 1, 'd');

Introduction to Oracle9i: SQL A-10

Practice 3 Solutions (continued)

If you want an extra challenge, complete the following exercises:

11. Create a query that displays the employees’ last names and commission amounts. If an employee
does not earn commission, put “No Commission.” Label the column COMM.

SELECT last_name,
NVL(TO_CHAR(commission_pct), 'No Commission') COMM

FROM employees;

12. Create a query that displays the employees’ last names and indicates the amounts of their annual

salaries with asterisks. Each asterisk signifies a thousand dollars. Sort the data in descending order
of salary. Label the column EMPLOYEES_AND_THEIR_SALARIES .

SELECT rpad(last_name, 8)||' '|| rpad(' ', salary/1000+1, '*')
EMPLOYEES_AND_THEIR_SALARIES

FROM employees
ORDER BY salary DESC;

13. Using the DECODE function, write a query that displays the grade of all employees based on the

value of the column JOB_ID, as per the following data:

JOB GRADE

AD_PRES A

ST_MAN B

IT_PROG C

SA_REP D

ST_CLERK E

None of the above 0

SELECT job_id, decode (job_id,
'ST_CLERK', 'E',
'SA_REP', 'D',
'IT_PROG', 'C',
'ST_MAN', 'B',
'AD_PRES', 'A',

'0')GRADE
FROM employees;

Introduction to Oracle9i: SQL A-11

Practice 3 Solutions (continued)

14. Rewrite the statement in the preceding question using the CASE syntax.

SELECT job_id, CASE job_id
WHEN 'ST_CLERK' THEN 'E'
WHEN 'SA_REP' THEN 'D'
WHEN 'IT_PROG' THEN 'C'
WHEN 'ST_MAN' THEN 'B'
WHEN 'AD_PRES' THEN 'A'
ELSE '0' END GRADE

FROM employees;

Introduction to Oracle9i: SQL A-12

Practice 4 Solutions

1. Write a query to display the last name, department number, and department name for all

employees.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id;

2. Create a unique listing of all jobs that are in department 30. Include the location of department 90

in the output.

SELECT DISTINCT job_id, location_id
FROM employees, departments
WHERE employees.department_id = departments.department_id
AND employees.department_id = 80;

3. Write a query to display the employee last name, department name, location ID, and city of all

employees who earn a commission.

SELECT e.last_name, d.department_name, d.location_id, l.city
FROM employees e, departments d, locations l
WHERE e.department_id = d.department_id
AND
d.location_id = l.location_id
AND e.commission_pct IS NOT NULL;

4. Display the employee last name and department name for all employees who have an a (lowercase)
in their last names. Place your SQL statement in a text file named lab4_4.sql.

SELECT last_name, department_name
FROM employees, departments
WHERE employees.department_id = departments.department_id
AND last_name LIKE '%a%';

Introduction to Oracle9i: SQL A-13

Practice 4 Solutions (continued)

5. Write a query to display the last name, job, department number, and department name for all

employees who work in Toronto.

SELECT e.last_name, e.job_id, e.department_id,
d.department_name

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
JOIN locations l
ON (d.location_id = l.location_id)
WHERE LOWER(l.city) = 'toronto';

6. Display the employee last name and employee number along with their manager’s last name and
manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.

Place your SQL statement in a text file named lab4_6.sql.

SELECT w.last_name "Employee", w.employee_id "EMP#",
m.last_name "Manager", m.employee_id "Mgr#"

FROM employees w join employees m
ON (w.manager_id = m.employee_id);

Introduction to Oracle9i: SQL A-14

Practice 4 Solutions (continued)

7. Modify lab4_6.sql to display all employees including King, who has no manager.

Place your SQL statement in a text file named lab4_7.sql. Run the query in lab4_7.sql
SELECT w.last_name "Employee", w.employee_id "EMP#",

m.last_name "Manager", m.employee_id "Mgr#"
FROM employees w
LEFT OUTER JOIN employees m
ON (w.manager_id = m.employee_id);

If you have time, complete the following exercises.

8. Create a query that displays employee last names, department numbers, and all the

employees who work in the same department as a given employee. Give each column an appropriate

label.

SELECT e.department_id department, e.last_name employee,
c.last_name colleague

FROM employees e JOIN employees c
ON (e.department_id = c.department_id)
WHERE e.employee_id <> c.employee_id
ORDER BY e.department_id, e.last_name, c.last_name;

9. Show the structure of the JOB_GRADES table. Create a query that displays the name, job,

department name, salary, and grade for all employees.
DESC JOB_GRADES
SELECT e.last_name, e.job_id, d.department_name,

e.salary, j.grade_level
FROM employees e, departments d, job_grades j
WHERE e.department_id = d.department_id
AND e.salary BETWEEN j.lowest_sal AND j.highest_sal;

-- OR
SELECT e.last_name, e.job_id, d.department_name,

e.salary, j.grade_level
FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
JOIN job_grades j
ON (e.salary BETWEEN j.lowest_sal AND j.highest_sal);

Introduction to Oracle9i: SQL A-15

Practice 4 Solutions (continued)

If you want an extra challenge, complete the following exercises:

10. Create a query to display the name and hire date of any employee hired after employee Davies.

SELECT e.last_name, e.hire_date
FROM employees e, employees davies
WHERE davies.last_name = 'Davies'
AND davies.hire_date < e.hire_date
-- OR
SELECT e.last_name, e.hire_date
FROM employees e JOIN employees davies
ON (davies.last_name = 'Davies')
WHERE davies.hire_date < e.hire_date;

11. Display the names and hire dates for all employees who were hired before their managers, along with
their manager’s names and hire dates. Label the columns Employee, Emp

Hired, Manager, and Mgr Hired, respectively.

SELECT w.last_name, w.hire_date, m.last_name, m.hire_date
FROM employees w, employees m
WHERE w.manager_id = m.employee_id
AND w.hire_date < m.hire_date;
-- OR
SELECT w.last_name, w.hire_date, m.last_name, m.hire_date
FROM employees w JOIN employees m
ON (w.manager_id = m.employee_id)
WHERE w.hire_date < m.hire_date;

Introduction to Oracle9i: SQL A-16

Practice 5 Solutions

Determine the validity of the following three statements. Circle either True or False.

1. Group functions work across many rows to produce one result.

True

2. Group functions include nulls in calculations.

False. Group functions ignore null values. If you want to include null values, use the NVL

function.

3. The WHERE clause restricts rows prior to inclusion in a group calculation.

True

4. Display the highest, lowest, sum, and average salary of all employees. Label the columns
Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole

number. Place your SQL statement in a text file named lab5_6.sql.

SELECT ROUND(MAX(salary),0) "Maximum",
ROUND(MIN(salary),0) "Minimum",
ROUND(SUM(salary),0) "Sum",

ROUND(AVG(salary),0) "Average"
FROM employees;

5. Modify the query in lab5_4.sql to display the minimum, maximum, sum, and average salary for

each job type. Resave lab5_4.sql to lab5_5.sql. Run the statement in lab5_5.sql.

SELECT job_id, ROUND(MAX(salary),0) "Maximum",
ROUND(MIN(salary),0) "Minimum",
ROUND(SUM(salary),0) "Sum",
ROUND(AVG(salary),0) "Average"

FROM employees
GROUP BY job_id;

Introduction to Oracle9i: SQL A-17

Practice 5 Solutions (continued)

6. Write a query to display the number of people with the same job.

SELECT job_id, COUNT(*)
FROM employees
GROUP BY job_id;

7. Determine the number of managers without listing them. Label the column Number of

Managers. Hint: Use the MANAGER_ID column to determine the number of managers.

SELECT COUNT(DISTINCT manager_id) "Number of Managers"
FROM employees;

8. Write a query that displays the difference between the highest and lowest salaries. Label the column
DIFFERENCE.

SELECT MAX(salary) - MIN(salary) DIFFERENCE
FROM employees;

If you have time, complete the following exercises.

9. Display the manager number and the salary of the lowest paid employee for that manager.

Exclude anyone whose manager is not known. Exclude any groups where the minimum

salary is less than $6,000. Sort the output in descending order of salary.

SELECT manager_id, MIN(salary)
FROM employees
WHERE manager_id IS NOT NULL
GROUP BY manager_id
HAVING MIN(salary) > 6000
ORDER BY MIN(salary) DESC;

10. Write a query to display each department’s name, location, number of employees, and the average
salary for all employees in that department. Label the columns Name, Location, Number of

People, and Salary, respectively. Round the average salary to two decimal places.

SELECT d.department_name "Name", d.location_id "Location",
COUNT(*) "Number of People",
ROUND(AVG(salary),2) "Salary"

FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_name, d.location_id;

Introduction to Oracle9i: SQL A-18

Practice 5 Solutions (continued)

If you want an extra challenge, complete the following exercises:

11. Create a query that will display the total number of employees and, of that total, the number of

employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

SELECT COUNT(*) total,
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1995,1,0))"1995",
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1996,1,0))"1996",
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1997,1,0))"1997",
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1998,1,0))"1998"

FROM employees;

12. Create a matrix query to display the job, the salary for that job based on department number, and the

total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate

heading.

SELECT job_id "Job",
SUM(DECODE(department_id , 20, salary)) "Dept 20",
SUM(DECODE(department_id , 50, salary)) "Dept 50",
SUM(DECODE(department_id , 80, salary)) "Dept 80",
SUM(DECODE(department_id , 90, salary)) "Dept 90",
SUM(salary) "Total"

FROM employees
GROUP BY job_id;

Introduction to Oracle9i: SQL A-19

Practice 6 Solutions

1. Write a query to display the last name and hire date of any employee in the same

department as Zlotkey. Exclude Zlotkey.

SELECT last_name, hire_date
FROM employees
WHERE department_id = (SELECT department_id

FROM employees
WHERE last_name = 'Zlotkey')

AND last_nae <> 'Zlotkey';

2. Create a query to display the employee numbers and last names of all employees who earn more than

the average salary. Sort the results in descending order of salary.

SELECT employee_id, last_name
FROM employees
WHERE salary > (SELECT AVG(salary)

FROM employees);

3. Write a query that displays the employee numbers and last names of all employees who work in a

department with any employee whose last name contains a u. Place your SQL statement in a text
file named lab6_3.sql. Run your query.

SELECT employee_id, last_name
FROM employees
WHERE department_id IN (SELECT department_id

FROM employees
WHERE last_name like '%u%');

4. Display the last name, department number, and job ID of all employees whose department location ID

is 1700.

SELECT last_name, department_id, job_id
FROM employees
WHERE department_id IN (SELECT department_id

FROM departments
WHERE location_id = 1700);

Introduction to Oracle9i: SQL A-20

Practice 6 Solutions (continued)

5. Display the last name and salary of every employee who reports to King.

SELECT last_name, salary
FROM employees
WHERE manager_id = (SELECT employee_id

FROM employees
WHERE last_name = 'King');

6. Display the department number, last name, and job ID for every employee in the Executive

department.

SELECT department_id, last_name, job_id
FROM employees
WHERE department_id IN (SELECT department_id

FROM departments
WHERE department_name = 'Executive');

If you have time, complete the following exercises:

7. Modify the query in lab6_3.sql to display the employee numbers, last names, and salaries of all

employees who earn more than the average salary and who work in a department with any employee
with a u in their name. Resave lab6_3.sql to lab6_7.sql. Run the statement in

lab6_7.sql.

SELECT employee_id, last_name, salary
FROM employees
WHERE department_id IN (SELECT department_id

FROM employees
WHERE last_name like '%u%')

AND salary > (SELECT AVG(salary)
FROM employees);

Introduction to Oracle9i: SQL A-21

Practice 7 Solutions

Determine whether the following statements are true or false:

1. The following statement is correct:

DEFINE & p_val = 100

False

The correct use of DEFINE is DEFINE p_val=100. The & is used within the SQL code.

2. The DEFINE command is a SQL command.

False

The DEFINE command is an iSQL*Plus command.

3. Write a script file to display the employee last name, job, and hire date for all employees who

started between a given range. Concatenate the name and job together, separated by a space

and comma, and label the column Employees. Use the DEFINE command to provide the two

ranges. Use the format MM/DD/YYYY. Save the script file as lab7_3.sql.

SET ECHO OFF
SET VERIFY OFF
DEFINE low_date = 01/01/1998
DEFINE high_date = 01/01/1999

SELECT last_name ||', '|| job_id EMPLOYEES, hire_date
FROM employees
WHERE hire_date BETWEEN TO_DATE('&low_date', 'MM/DD/YYYY')

AND TO_DATE('&high_date', 'MM/DD/YYYY')

/
UNDEFINE low_date
UNDEFINE high_date
SET VERIFY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-22

Practice 7 Solutions (continued)

4. Write a script to display the employee last name, job, and department name for a given location. The

search condition should allow for case-insensitive searches of the department location. Save the
script file as lab7_4.sql.

SET ECHO OFF
SET VERIFY OFF
COLUMN last_name HEADING "EMPLOYEE NAME"

COLUMN department_name HEADING "DEPARTMENT NAME”
SELECT e.last_name, e.job_id, d.department_name

FROM employees e, departments d, locations l

WHERE e.department_id = d.department_id

AND l.location_id = d.location_id

AND l.city = INITCAP('&p_location')

/

COLUMN last_name CLEAR

COLUMN department_name CLEAR
SET VERIFY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-23

Practice 7 Solutions (continued)

5. Modify the code in lab7_4.sql to create a report containing the department name, employee last

name, hire date, salary, and each employee’s annual salary for all employees in a given location.
Label the columns DEPARTMENT NAME, EMPLOYEE NAME, START DATE, SALARY, and

ANNUAL SALARY, placing the labels on multiple lines. Resave the script as lab7_5.sql and

execute the commands in the script.

SET ECHO OFF
SET FEEDBACK OFF
SET VERIFY OFF
BREAK ON department_name
COLUMN department_name HEADING "DEPARTMENT|NAME"
COLUMN last_name HEADING "EMPLOYEE|NAME"
COLUMN hire_date HEADING "START|DATE"
COLUMN salary HEADING "SALARY" FORMAT $99,990.00
COLUMN asal HEADING "ANNUAL|SALARY" FORMAT $99,990.00
SELECT d.department_name, e.last_name, e.hire_date,

e.salary, e.salary*12 asal
FROM departments d, employees e, locations l
WHERE e.department_id = d.department_id
AND d.location_id = l.location_id
AND l.city = '&p_location'
ORDER BY d.department_name

/
COLUMN department_name CLEAR
COLUMN last_name CLEAR
COLUMN hire_date CLEAR
COLUMN salary CLEAR
COLUMN asal CLEAR
CLEAR BREAK
SET VERIFY ON
SET FEEDBACK ON
SET ECHO ON

Introduction to Oracle9i: SQL A-24

Practice 8 Solutions

Insert data into the MY_EMPLOYEE table.

1. Run the statement in the lab8_1.sql script to build the MY_EMPLOYEE table that will be used for

the lab.

CREATE TABLE my_employee

(id NUMBER(4) CONSTRAINT my_employee_id_nn NOT NULL,

last_name VARCHAR2(25),

first_name VARCHAR2(25),

userid VARCHAR2(8),

salary NUMBER(9,2));

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.

DESCRIBE my_employee

3. Add the first row of data to the MY_EMPLOYEE table from the following sample data. Do not list the

columns in the INSERT clause.

INSERT INTO my_employee
VALUES (1, 'Patel', 'Ralph', 'rpatel', 895);

4. Populate the MY_EMPLOYEE table with the second row of sample data from the preceding list. This

time, list the columns explicitly in the INSERT clause.

INSERT INTO my_employee (id, last_name, first_name,
userid, salary)

VALUES (2, 'Dancs', 'Betty', 'bdancs', 860);

5. Confirm your addition to the table.

SELECT *
FROM my_employee;

ID LAST_NAME FIRST_NAME USERID SALARY

1 Patel Ralph rpatel 895

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 Newman Chad cnewman 750

5 Ropeburn Audrey aropebur 1550

Introduction to Oracle9i: SQL A-25

Practice 8 Solutions (continued)

6. Write an insert statement in a text file named loademp.sql to load rows into the

MY_EMPLOYEE table. Concatenate the first letter of the first name and the first seven characters of

the last name to produce the userid.
SET ECHO OFF
SET VERIFY OFF
INSERT INTO my_employee
VALUES (&p_id, '&p_last_name', '&p_first_name',

lower(substr('&p_first_name', 1, 1) ||
substr('&p_last_name', 1, 7)), &p_salary);

SET VERIFY ON
SET ECHO ON

7. Populate the table with the next two rows of sample data by running the insert statement in the

script that you created.

SET ECHO OFF
SET VERIFY OFF
INSERT INTO my_employee
VALUES (&p_id, '&p_last_name', '&p_first_name',

lower(substr('&p_first_name', 1, 1) ||
substr('&p_last_name', 1, 7)), &p_salary);

SET VERIFY ON
SET ECHO ON

8. Confirm your additions to the table.

SELECT *
FROM my_employee;

9. Make the data additions permanent.

COMMIT;

Introduction to Oracle9i: SQL A-26

Practice 8 Solutions (continued)

Update and delete data in the MY_EMPLOYEE table.

10. Change the last name of employee 3 to Drexler.

UPDATE my_employee
SET last_name = 'Drexler'
WHERE id = 3;

11. Change the salary to 1000 for all employees with a salary less than 900.

UPDATE my_employee
SET salary = 1000
WHERE salary < 900;

12. Verify your changes to the table.

SELECT last_name, salary
FROM my_employee;

13. Delete Betty Dancs from the MY_EMPLOYEE table.

DELETE
FROM my_employee
WHERE last_name = 'Dancs';

14. Confirm your changes to the table.

SELECT *
FROM my_employee;

15. Commit all pending changes.

COMMIT;

Control data transaction to the MY_EMPLOYEE table.

16. Populate the table with the last row of sample data by modifying the statements in the script that you

created in step 6. Run the statements in the script.

SET ECHO OFF
SET VERIFY OFF
INSERT INTO my_employee
VALUES (&p_id, '&p_last_name', '&p_first_name',

lower(substr('&p_first_name', 1, 1) ||
substr('&p_last_name', 1, 7)), &p_salary);

SET VERIFY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-27

Practice 8 Solutions (continued)

17. Confirm your addition to the table.

SELECT *
FROM my_employee;

18. Mark an intermediate point in the processing of the transaction.

SAVEPOINT step_18;

19. Empty the entire table.

DELETE
FROM my_employee;

20. Confirm that the table is empty.

SELECT *
FROM my_employee;

21. Discard the most recent DELETE operation without discarding the earlier INSERT operation.

ROLLBACK TO step_18;

22. Confirm that the new row is still intact.

SELECT *
FROM my_employee;

23. Make the data addition permanent.

COMMIT;

Introduction to Oracle9i: SQL A-28

Practice 9 Solutions

1. Create the DEPT table based on the following table instance chart. Place the syntax in a script called

lab9_1.sql, then execute the statement in the script to create the table. Confirm that the table is

created.

CREATE TABLE dept
(id NUMBER(7),
name VARCHAR2(25));

DESCRIBE dept

2. Populate the DEPT table with data from the DEPARTMENTS table. Include only columns that

you need.

INSERT INTO dept
SELECT department_id, department_name
FROM departments;

3. Create the EMP table based on the following table instance chart. Place the syntax in a script called

lab9_3.sql, and then execute the statement in the script to create the table. Confirm that the table is

created.

Column Name ID NAME

Key Type

Nulls/Unique

FK Table

FK Column

Data type Number VARCHAR2

Length 7 25

Column Name ID LAST_NAME FIRST_NAME DEPT_ID

Key Type

Nulls/Unique

FK Table

FK Column

Data type Number VARCHAR2 VARCHAR2 Number

Length 7 25 25 7

Introduction to Oracle9i: SQL A-29

Practice 9 Solutions (continued)

CREATE TABLE emp
(id NUMBER(7),
last_name VARCHAR2(25),
first_name VARCHAR2(25),
dept_id NUMBER(7));

DESCRIBE emp

4. Modify the EMP table to allow for longer employee last names. Confirm your modification.

ALTER TABLE emp
MODIFY (last_name VARCHAR2(50));

DESCRIBE emp

5. Confirm that both the DEPT and EMP tables are stored in the data dictionary. (Hint:

USER_TABLES)

SELECT table_name
FROM user_tables
WHERE table_name IN ('DEPT', 'EMP');

6. Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the

EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name

the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY , and DEPT_ID,

respectively.

CREATE TABLE employees2 AS
SELECT employee_id id, first_name, last_name, salary,

department_id dept_id
FROM employees;

7. Drop the EMP table.

DROP TABLE emp;

8. Rename the EMPLOYEES2 table to EMP.

RENAME employees2 TO emp;

Introduction to Oracle9i: SQL A-30

Practice 9 Solutions (continued)

9. Add a comment to the DEPT and EMP table definitions describing the tables. Confirm your additions

in the data dictionary.

COMMENT ON TABLE emp IS 'Employee Information';
COMMENT ON TABLE dept IS 'Department Information';
SELECT *
FROM user_tab_comments
WHERE table_name = 'DEPT'
OR table_name = 'EMP';

10. Drop the FIRST_NAME column from the EMP table. Confirm your modification by checking the
description of the table.

ALTER TABLE emp
DROP COLUMN FIRST_NAME;

DESCRIBE emp

11. In the EMP table, mark the DEPT_ID column in the EMP table as UNUSED. Confirm your

modification by checking the description of the table.

ALTER TABLE emp
SET UNUSED (dept_id);

DESCRIBE emp

12. Drop all the UNUSED columns from the EMP table. Confirm your modification by checking the
description of the table.

ALTER TABLE emp
DROP UNUSED COLUMNS;

DESCRIBE emp

Introduction to Oracle9i: SQL A-31

Practice 10 Solutions

1. Add a table-level PRIMARY KEY constraint to the EMP table on the ID column. The constraint

should be named at creation. Name the constraint my_emp_id_pk

ALTER TABLE emp
ADD CONSTRAINT my_emp_id_pk PRIMARY KEY (id);

2. Create a PRIMARY KEY constraint to the DEPT table using the ID column. The constraint should

be named at creation. Name the constraint my_deptid_pk.

ALTER TABLE dept
ADD CONSTRAINT my_deptid_pk PRIMARY KEY(id);

3. Add a column DEPT_ID to the EMP table. Add a foreign key reference on the EMP table that

ensures that the employee is not assigned to a nonexistent department. Name the constraint
my_emp_dept_id_fk.

ALTER TABLE emp
ADD (dept_id NUMBER(7));

ALTER TABLE emp
ADD CONSTRAINT my_emp_dept_id_fk
FOREIGN KEY (dept_id) REFERENCES dept(id);

4. Confirm that the constraints were added by querying the USER_CONSTRAINTS view. Note the

types and names of the constraints. Save your statement text in a file called lab10_4.sql.

SELECT constraint_name, constraint_type
FROM user_constraints
WHERE table_name IN ('EMP', 'DEPT');

5. Display the object names and types from the USER_OBJECTS data dictionary view for the EMP

and DEPT tables. Notice that the new tables and a new index were created.

SELECT object_name, object_type
FROM user_objects
WHERE object_name LIKE 'EMP%'
OR object_name LIKE 'DEPT%';

If you have time, complete the following exercise:

6. Modify the EMP table. Add a COMMISSION column of NUMBER data type, precision 2, scale 2.

Add a constraint to the commission column that ensures that a commission value is greater than

zero.

ALTER TABLE EMP
ADD commission NUMBER(2,2)
CONSTRAINT my_emp_comm_ck CHECK (commission >= 0;

Introduction to Oracle9i: SQL A-32

Practice 11 Solutions

1. Create a view called EMPLOYEES_VU based on the employee numbers, employee names, and

department numbers from the EMPLOYEES table. Change the heading for the employee name to

EMPLOYEE.
CREATE OR REPLACE VIEW employees_vu AS
SELECT employee_id, last_name employee, department_id
FROM employees;

2. Display the contents of the EMPLOYEES_VU view.

SELECT *
FROM employees_vu;

3. Select the view name and text from the USER_VIEWS data dictionary view.

Note: Another view already exists. The EMP_DETAILS_VIEW was created as part of your schema.

Note: To see more contents of a LONG column, use the iSQL*Plus command SET LONG n, where

n is the value of the number of characters of the LONG column that you want to see.

SET LONG 600
SELECT view_name, text
FROM user_views;

4. Using your EMPLOYEES_VU view, enter a query to display all employee names and department

numbers.

SELECT employee, department_id
FROM employees_vu;

5. Create a view named DEPT50 that contains the employee numbers, employee last names, and

department numbers for all employees in department 50. Label the view columns

EMPNO, EMPLOYEE, and DEPTNO. Do not allow an employee to be reassigned to another

department through the view.

CREATE VIEW dept50 AS
SELECT employee_id empno, last_name employee,

department_id deptno
FROM employees
WHERE department_id = 50
WITH CHECK OPTION CONSTRAINT emp_dept_50;

Introduction to Oracle9i: SQL A-33

Practice 11 Solutions (continued)

6. Display the structure and contents of the DEPT50 view.

DESCRIBE dept50
SELECT *
FROM dept50;

7. Attempt to reassign Matos to department 80.

UPDATE dept50
SET deptno = 80
WHERE employee = 'Matos';

If you have time, complete the following exercise:

8. Create a view called SALARY_VU based on the employee last names, department names, salaries,

and salary grades for all employees. Use the EMPLOYEES, DEPARTMENTS, and JOB_GRADES

tables. Label the columns Employee, Department, Salary, and Grade, respectively.

CREATE OR REPLACE VIEW salary_vu
AS
SELECT e.last_name "Employee",

d.department_name "Department",
e.salary "Salary",
j.grade_level "Grades"

FROM employees e,
departments d,
job_grades j

WHERE e.department_id = d.department_id
AND e.salary BETWEEN j.lowest_sal and j.highest_sal;

Introduction to Oracle9i: SQL A-34

Practice 12 Solutions

1. Create a sequence to be used with the primary key column of the DEPT table. The sequence should

start at 200 and have a maximum value of 1000. Have your sequence increment by ten numbers.
Name the sequence DEPT_ID_SEQ.

CREATE SEQUENCE dept_id_seq
START WITH 200
INCREMENT BY 10
MAXVALUE 1000;

2. Write a query in a script to display the following information about your sequences: sequence name,
maximum value, increment size, and last number. Name the script lab12_2.sql. Run the

statement in your script.

SELECT sequence_name, max_value, increment_by, last_number
FROM user_sequences;

3. Write a script to insert two rows into the DEPT table. Name your script lab12_3.sql.

Be sure to use the sequence that you created for the ID column. Add two departments named

Education and Administration. Confirm your additions. Run the commands in your script.

INSERT INTO dept
VALUES (dept_id_seq.nextval, 'Education');

INSERT INTO dept
VALUES (dept_id_seq.nextval, 'Administration');

4. Create a nonunique index on the foreign key column (DEPT_ID) in the EMP table.

CREATE INDEX emp_dept_id_idx ON emp (dept_id);

5. Display the indexes and uniqueness that exist in the data dictionary for the EMP table. Save the

statement into a script named lab12_5.sql.

SELECT index_name, table_name, uniqueness
FROM user_indexes
WHERE table_name = 'EMP';

Introduction to Oracle9i: SQL A-35

Practice 13 Solutions

1. What privilege should a user be given to log on to the Oracle Server? Is this a system or an object

privilege?

The CREATE SESSION system privilege

2. What privilege should a user be given to create tables?

The CREATE TABLE privilege

3. If you create a table, who can pass along privileges to other users on your table?

You can, or anyone you have given those privileges to by using the WITH GRANT
OPTION.

4. You are the DBA. You are creating many users who require the same system privileges.

What should you use to make your job easier?

Create a role containing the system privileges and grant the role to the users

5. What command do you use to change your password?

The ALTER USER statement

6. Grant another user access to your DEPARTMENTS table. Have the user grant you query access to his

or her DEPARTMENTS table.

Team 2 executes the GRANT statement.

GRANT select
ON departments
TO <user1>;

Team 1 executes the GRANT statement.

GRANT select
ON departments
TO <user2>;

WHERE user1 is the name of team 1 and user2 is the name of team 2.

7. Query all the rows in your DEPARTMENTS table.

SELECT *
FROM departments;

Introduction to Oracle9i: SQL A-36

Practice 13 Solutions (continued)

8. Add a new row to your DEPARTMENTS table. Team 1 should add Education as department

number 500. Team 2 should add Human Resources department number 510. Query the other team’s

table.

Team 1 executes this INSERT statement.

INSERT INTO departments(department_id, department_name)

VALUES (200, 'Education');

COMMIT;

Team 2 executes this INSERT statement.

INSERT INTO departments(department_id, department_name)

VALUES (210, 'Administration');

COMMIT;

9. Create a synonym for the other team’s DEPARTMENTS table.

Team 1 creates a synonym named team2.

CREATE SYNONYM team2
FOR <user2>.DEPARTMENTS;

Team 2 creates a synonym named team1.

CREATE SYNONYM team1
FOR <user1>. DEPARTMENTS;

10. Query all the rows in the other team’s DEPARTMENTS table by using your synonym.

Team 1 executes this SELECT statement.

SELECT *

FROM team2;

Team 2 executes this SELECT statement.

SELECT *

FROM team1;

Introduction to Oracle9i: SQL A-37

Practice 13 Solutions (continued)

11. Query the USER_TABLES data dictionary to see information about the tables that you own.

SELECT table_name
FROM user_tables;

12. Query the ALL_TABLES data dictionary view to see information about all the tables that you

can access. Exclude tables that you own.

SELECT table_name, owner
FROM all_tables
WHERE owner <> <your account>;

13. Revoke the SELECT privilege from the other team.

Team 1 revokes the privilege.

REVOKE select
ON departments
FROM user2;

Team 2 revokes the privilege.

REVOKE select
ON departments
FROM user1;

Introduction to Oracle9i: SQL A-38

Practice 14 Solutions

1. Create the tables based on the following table instance charts. Choose the appropriate data types and

be sure to add integrity constraints.

a. Table name: MEMBER

CREATE TABLE member

(member_id NUMBER(10)
CONSTRAINT member_member_id_pk PRIMARY KEY,

last_name VARCHAR2(25)
CONSTRAINT member_last_name_nn NOT NULL,

first_name VARCHAR2(25),
address VARCHAR2(100),
city VARCHAR2(30),
phone VARCHAR2(15),
join_date DATE DEFAULT SYSDATE

CONSTRAINT member_join_date_nn NOT NULL);

Column_

Name

MEMBER_
ID

LAST_
NAME

FIRST_NAM
E

ADDRESS CITY PHONE JOIN
_
DATE

Key

Type

PK

Null/

Unique

NN,U NN NN

Default

Value

System

Date

Data

Type

NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE

Length 10 25 25 100 30 15

Introduction to Oracle9i: SQL A-39

Practice 14 Solutions (continued)

b. Table name: TITLE

CREATE TABLE title
(title_id NUMBER(10)

CONSTRAINT title_title_id_pk PRIMARY KEY,
title VARCHAR2(60)

CONSTRAINT title_title_nn NOT NULL,
description VARCHAR2(400)

CONSTRAINT title_description_nn NOT NULL,
rating VARCHAR2(4)

CONSTRAINT title_rating_ck CHECK
(rating IN ('G', 'PG', 'R', 'NC17', 'NR')),

category VARCHAR2(20),
CONSTRAINT title_category_ck CHECK

(category IN ('DRAMA', 'COMEDY', 'ACTION',
'CHILD', 'SCIFI', 'DOCUMENTARY')),

release_date DATE);

Column_

Name

TITLE_ID TITLE DESCRIPTION RATING CATEGORY RELEASE_
DATE

Key

Type

PK

Null/

Unique

NN,U NN NN

Check G, PG, R,

NC17, NR

DRAMA,

COMEDY,

ACTION,

CHILD,

SCIFI,

DOCUMEN-

TARY

Data Type NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE

Length 10 60 400 4 20

Introduction to Oracle9i: SQL A-40

Practice 14 Solutions (continued)

c. Table name: TITLE_COPY

CREATE TABLE title_copy
(copy_id NUMBER(10),
title_id NUMBER(10)

CONSTRAINT title_copy_title_if_fk REFERENCES title(title_id),
status VARCHAR2(15)
CONSTRAINT title_copy_status_nn NOT NULL
CONSTRAINT title_copy_status_ck CHECK (status IN

('AVAILABLE', 'DESTROYED','RENTED', 'RESERVED')),
CONSTRAINT title_copy_copy_id_title_id_pk

PRIMARY KEY (copy_id, title_id));

Column

Name

COPY_ID TITLE_ID STATUS

Key

Type

PK PK,FK

Null/

Unique

NN,U NN,U NN

Check AVAILABLE,

DESTROYED,

RENTED,

RESERVED

FK Ref

Table

TITLE

FK Ref

Column

TITLE_ID

Data

Type

NUMBER NUMBER VARCHAR2

Length 10 10 15

Introduction to Oracle9i: SQL A-41

Practice 14 Solutions (continued)

d. Table name: RENTAL

CREATE TABLE rental
(book_date DATE DEFAULT SYSDATE,
member_id NUMBER(10)

CONSTRAINT rental_member_id_fk
REFERENCES member(member_id),

copy_id NUMBER(10),
act_ret_date DATE,
exp_ret_date DATE DEFAULT SYSDATE + 2,
title_id NUMBER(10),

CONSTRAINT rental_book_date_copy_title_pk

PRIMARY KEY (book_date, member_id,

copy_id,title_id),
CONSTRAINT rental_copy_id_title_id_fk

FOREIGN KEY (copy_id, title_id)
REFERENCES title_copy(copy_id, title_id));

Column

Name

BOOK_
DATE

MEMBER_
ID

COPY_
ID

ACT_RET_
DATE

EXP_RET_
DATE

TITLE_
ID

Key

Type

PK PK,FK1 PK,FK2 PK,FK2

Default

Value

System

Date

System Date

+ 2 days

FK Ref

Table

MEMBER TITLE_
COPY

TITLE_
COPY

FK Ref

Column

MEMBER_I
D

COPY_
ID

TITLE_ID

Data

Type

DATE NUMBER NUMBER DATE DATE NUMBER

Length 10 10 10

Introduction to Oracle9i: SQL A-42

Practice 14 Solutions (continued)

e. Table name: RESERVATION

CREATE TABLE reservation
(res_date DATE,
member_id NUMBER(10)

CONSTRAINT reservation_member_id
REFERENCES member(member_id),

title_id NUMBER(10)
CONSTRAINT reservation_title_id
REFERENCES title(title_id),

CONSTRAINT reservation_resdate_mem_tit_pk PRIMARY KEY
(res_date, member_id, title_id));

Column

Name

RES_
DATE

MEMBER_
ID

TITLE_
ID

Key

Type

PK PK,FK1 PK,FK2

Null/

Unique

NN,U NN,U NN

FK Ref

Table

MEMBER TITLE

FK Ref

Column

MEMBER_ID TITLE_ID

Data Type DATE NUMBER NUMBER

Length 10 10

Introduction to Oracle9i: SQL A-43

Practice 14 Solutions (continued)

2. Verify that the tables and constraints were created properly by checking the data dictionary.

SELECT table_name
FROM user_tables
WHERE table_name IN ('MEMBER', 'TITLE', 'TITLE_COPY',

'RENTAL', 'RESERVATION');

SELECT constraint_name, constraint_type, table_name
FROM user_constraints
WHERE table_name IN ('MEMBER', 'TITLE', 'TITLE_COPY',

'RENTAL', 'RESERVATION');

3. Create sequences to uniquely identify each row in the MEMBER table and the TITLE table.

a. Member number for the MEMBER table: start with 101; do not allow caching of the

values. Name the sequence MEMBER_ID_SEQ.

CREATE SEQUENCE member_id_seq
START WITH 101
NOCACHE;

b. Title number for the TITLE table: start with 92; no caching. Name the sequence

TITLE_ID_SEQ.

CREATE SEQUENCE title_id_seq
START WITH 92
NOCACHE;

c. Verify the existence of the sequences in the data dictionary.

SELECT sequence_name, increment_by, last_number
FROM user_sequences
WHERE sequence_name IN ('MEMBER_ID_SEQ', 'TITLE_ID_SEQ');

Introduction to Oracle9i: SQL A-44

Practice 14 Solutions (continued)

4. Add data to the tables. Create a script for each set of data to add.

a. Add movie titles to the TITLE table. Write a script to enter the movie information. Save the

statements in a script named lab14_4a.sql. Use the sequences to uniquely identify each

title. Enter the release dates in the DD-MON-YYYY format. Remember that single quotation

marks in a character field must be specially handled. Verify your additions.

SET ECHO OFF
INSERT INTO title(title_id, title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'Willie and Christmas Too',

'All of Willie''s friends make a Christmas list for
Santa, but Willie has yet to add his own wish list.',

'G', 'CHILD', TO_DATE('05-OCT-1995','DD-MON-YYYY')

/
INSERT INTO title(title_id , title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'Alien Again', 'Yet another

installment of science fiction history. Can the
heroine save the planet from the alien life form?',
'R', 'SCIFI', TO_DATE('19-MAY-1995','DD-MON-YYYY'))

/
INSERT INTO title(title_id, title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'The Glob', 'A meteor crashes

near a small American town and unleashes carnivorous
goo in this classic.', 'NR', 'SCIFI',

TO_DATE('12-AUG-1995','DD-MON-YYYY'))
/
INSERT INTO title(title_id, title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'My Day Off', 'With a little

luck and a lot ingenuity, a teenager skips school for
a day in New York.', 'PG', 'COMEDY',

TO_DATE('12-JUL-1995','DD-MON-YYYY'))
/

...
COMMIT
/
SET ECHO ON

SELECT title
FROM title;

Introduction to Oracle9i: SQL A-45

Practice 14 Solutions (continued)

Title Description Rating Category Release_date

Willie and

Christmas

Too

All of Willie’s friends

make a Christmas list for

Santa, but Willie has yet to

add his own wish list.

G CHILD 05-OCT-1995

Alien Again Yet another installation of

science fiction history. Can

the heroine save the planet

from the alien life form?

R SCIFI 19-MAY-1995

The Glob A meteor crashes near a

small American town and

unleashes carnivorous goo

in this classic.

NR SCIFI 12-AUG-1995

My Day Off With a little luck and a lot

of ingenuity, a teenager

skips school for a day in

New York

PG COMEDY 12-JUL-1995

Miracles on

Ice

A six-year-old has doubts

about Santa Claus, but she

discovers that miracles

really do exist.

PG DRAMA 12-SEP-1995

Soda Gang After discovering a cache

of drugs, a young couple

find themselves pitted

against a vicious gang.

NR ACTION 01-JUN-1995

Introduction to Oracle9i: SQL A-46

Practice 14 Solutions (continued)

b. Add data to the MEMBER table. Place the insert statements in a script named

lab14_4b.sql. Execute commands in the script. Be sure to use the sequence to add the

member numbers.

SET ECHO OFF
SET VERIFY OFF
INSERT INTO member(member_id, first_name, last_name, address,

city, phone, join_date)
VALUES (member_id_seq.NEXTVAL, '&first_name', '&last_name',

'&address', '&city', '&phone', TO_DATE('&join_date',

'DD-MM-YYYY');
COMMIT;
SET VERIFY ON
SET ECHO ON

First_

Name

Last_Name Address City Phone Join_Date

Carmen Velasquez 283 King Street Seattle 206-899-6666 08-MAR-1990

LaDoris Ngao 5 Modrany Bratislava 586-355-8882 08-MAR-1990

Midori Nagayama 68 Via Centrale Sao Paolo 254-852-5764 17-JUN-1991

Mark Quick-to-

See

6921 King

Way

Lagos 63-559-7777 07-APR-1990

Audry Ropeburn 86 Chu Street Hong Kong 41-559-87 18-JAN-1991

Molly Urguhart 3035 Laurier Quebec 418-542-9988 18-JAN-1991

Introduction to Oracle9i: SQL A-47

Practice 14 Solutions (continued)

c. Add the following movie copies in the TITLE_COPY table:

Note: Have the TITLE_ID numbers available for this exercise.

INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 92, 'AVAILABLE');

INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 93, 'AVAILABLE');

INSERT INTO title_copy(copy_id, title_id, status)
VALUES (2, 93, 'RENTED');

INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 94, 'AVAILABLE');

INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 95, 'AVAILABLE');

INSERT INTO title_copy(copy_id, title_id,status)
VALUES (2, 95, 'AVAILABLE');

INSERT INTO title_copy(copy_id, title_id,status)
VALUES (3, 95, 'RENTED');

INSERT INTO title_copy(copy_id, title_id,status)
VALUES (1, 96, 'AVAILABLE');

INSERT INTO title_copy(copy_id, title_id,status)
VALUES (1, 97, 'AVAILABLE');

Title Copy_Id Status

Willie and Christmas Too 1 AVAILABLE

Alien Again 1 AVAILABLE

2 RENTED

The Glob 1 AVAILABLE

My Day Off 1 AVAILABLE

2 AVAILABLE

3 RENTED

Miracles on Ice 1 AVAILABLE

Soda Gang 1 AVAILABLE

Introduction to Oracle9i: SQL A-48

Practice 14 Solutions (continued)

d. Add the following rentals to the RENTAL table:

Note: Title number may be different depending on sequence number.

INSERT INTO rental(title_id, copy_id, member_id,
book_date, exp_ret_date, act_ret_date)

VALUES (92, 1, 101, sysdate-3, sysdate-1, sysdate-2);

INSERT INTO rental(title_id, copy_id, member_id,
book_date, exp_ret_date, act_ret_date)

VALUES (93, 2, 101, sysdate-1, sysdate-1, NULL);

INSERT INTO rental(title_id, copy_id, member_id,
book_date, exp_ret_date, act_ret_date)

VALUES (95, 3, 102, sysdate-2, sysdate, NULL);

INSERT INTO rental(title_id, copy_id, member_id,
book_date, exp_ret_date,act_ret_date)

VALUES (97, 1, 106, sysdate-4, sysdate-2, sysdate-2);

COMMIT;

Title_

Id

Copy_

Id

Member_

Id Book_date Exp_Ret_Date Act_Ret_Date

92 1 101 3 days ago 1 day ago 2 days ago

93 2 101 1 day ago 1 day from now

95 3 102 2 days ago Today

97 1 106 4 days ago 2 days ago 2 days ago

Introduction to Oracle9i: SQL A-49

Practice 14 Solutions (continued)

5. Create a view named TITLE_AVAIL to show the movie titles and the availability of

each copy and its expected return date if rented. Query all rows from the view. Order the results by

title.

CREATE VIEW title_avail AS
SELECT t.title, c.copy_id, c.status, r.exp_ret_date
FROM title t, title_copy c, rental r
WHERE t.title_id = c.title_id
AND c.copy_id = r.copy_id(+)
AND c.title_id = r.title_id(+);

SELECT *
FROM title_avail
ORDER BY title, copy_id;

6. Make changes to data in the tables.

a. Add a new title. The movie is “Interstellar Wars,” which is rated PG and classified as a

scifi movie. The release date is 07-JUL-77. The description is “Futuristic interstellar

action movie. Can the rebels save the humans from the evil empire?” Be sure to add a title

copy record for two copies.

INSERT INTO title(title_id, title, description, rating,
category, release_date)

VALUES (title_id_seq.NEXTVAL, 'Interstellar Wars',
'Futuristic interstellar action movie. Can the
rebels save the humans from the evil Empire?',
'PG', 'SCIFI', '07-JUL-77');

INSERT INTO title_copy (copy_id, title_id, status)

VALUES (1, 98, 'AVAILABLE');

INSERT INTO title_copy (copy_id, title_id, status)

VALUES (2, 98, 'AVAILABLE');

b. Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent

“Interstellar Wars.” The other is for Mark Quick-to-See, who wants to rent “Soda Gang.”

INSERT INTO reservation (res_date, member_id, title_id)

VALUES (SYSDATE, 101, 98);
INSERT INTO reservation (res_date, member_id, title_id)
VALUES (SYSDATE, 104, 97);

Introduction to Oracle9i: SQL A-50

Practice 14 Solutions (continued)

c. Customer Carmen Velasquez rents the movie “Interstellar Wars,” copy 1. Remove her

reservation for the movie. Record the information about the rental. Allow the default

value for the expected return date to be used. Verify that the rental was recorded by using

the view you created.

INSERT INTO rental(title_id, copy_id, member_id)
VALUES (98,1,101);
UPDATE title_copy
SET status= 'RENTED'
WHERE title_id = 98
AND copy_id = 1;
DELETE
FROM reservation
WHERE member_id = 101;

SELECT *
FROM title_avail
ORDER BY title, copy_id;

7. Make a modification to one of the tables.

a. Add a PRICE column to the TITLE table to record the purchase price of the video. The

column should have a total length of eight digits and two decimal places. Verify your

modifications.

ALTER TABLE title
ADD (price NUMBER(8,2));
DESCRIBE title

Introduction to Oracle9i: SQL A-51

Practice 14 Solutions (continued)

b. Create a script named lab14_7b.sql that contains update statements that update each

video with a price according to the following list. Run the commands in the script.

Note: Have the TITLE_ID numbers available for this exercise.

SET ECHO OFF
SET VERIFY OFF

DEFINE price=

DEFINE title_id=
UPDATE title
SET price = &price
WHERE title_id = &title_id;
SET VERIFY OFF

SET ECHO OFF

c. Ensure that in the future all titles contain a price value. Verify the constraint.

ALTER TABLE title
MODIFY (price CONSTRAINT title_price_nn NOT NULL);
SELECT constraint_name, constraint_type,

search_condition
FROM user_constraints
WHERE table_name = 'TITLE';

Title Price

Willie and Christmas Too 25

Alien Again 35

The Glob 35

My Day Off 35

Miracles on Ice 30

Soda Gang 35

Interstellar Wars 29

Introduction to Oracle9i: SQL A-52

Practice 14 Solutions (continued)

8. Create a report titled Customer History Report. This report contains each customer's

history of renting videos. Be sure to include the customer name, movie rented, dates of the

rental, and duration of rentals. Total the number of rentals for all customers for the reporting
period. Save the commands that generate the report in a script file named lab14_8.sql.

SET ECHO OFF
SET VERIFY OFF

TTITLE 'Customer History Report'
BREAK ON member SKIP 1 ON REPORT
SELECT m.first_name||' '||m.last_name MEMBER, t.title,

r.book_date, r.act_ret_date - r.book_date DURATION
FROM member m, title t, rental r
WHERE r.member_id = m.member_id
AND r.title_id = t.title_id
ORDER BY member;

CLEAR BREAK
TTITLE OFF
SET VERIFY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-53

Practice 15 Solutions

1. List the department IDs for departments that do not contain the job ID ST_CLERK, using SET

operators.

SELECT department_id
FROM departments
MINUS
SELECT department_id
FROM employees
WHERE job_id = 'ST_CLERK';

2. Display the country ID and the name of the countries that have no departments located in them,
using SET operators.

SELECT country_id,country_name
FROM countries
MINUS
SELECT l.country_id,c.country_name
FROM locations l, countries c
WHERE l.country_id = c.country_id;

3. Produce a list of jobs for departments 10, 50, and 20, in that order. Display job ID and
department ID, using SET operators.

COLUMN dummy PRINT
SELECT job_id, department_id, 'x' dummy
FROM employees
WHERE department_id = 10
UNION
SELECT job_id, department_id, 'y'
FROM employees
WHERE department_id = 50
UNION
SELECT job_id, department_id, 'z'
FROM employees
WHERE department_id = 20
ORDER BY 3;
COLUMN dummy NOPRINT

Introduction to Oracle9i: SQL A-54

Practice 15 Solutions (continued)

4. List the employee IDs and job IDs of those employees, who are currently in the job title that they

have held once before during their tenure with the company.

SELECT employee_id,job_id
FROM employees
INTERSECT
SELECT employee_id,job_id
FROM job_history;

5. Write a compond query that lists the following :

• Last names and department ID of all the employees from the EMPLOYEES table, irrespective

of whether they belong to any department

• Department ID and department name of all the departments from the DEPARTMENTS table,

irrespective of whether they have employees working in them

SELECT last_name,department_id,TO_CHAR(null)
FROM employees
UNION
SELECT TO_CHAR(null),department_id,department_name
FROM departments;

Introduction to Oracle9i: SQL A-55

Practice 16 Solutions

1. Alter the session to set the NLS_DATE_FORMAT to DD-MON-YYYY HH24:MI:SS.

ALTER SESSION SET NLS_DATE_FORMAT =
'DD-MON-YYYY HH24:MI:SS';

2. a. Write queries to display the time zone offsets (TZ_OFFSET) for the following time zones.

US/Pacific-New

SELECT TZ_OFFSET ('US/Pacific-New') from dual;

Singapore

SELECT TZ_OFFSET ('Singapore') from dual;

Egypt

SELECT TZ_OFFSET ('Egypt') from dual;

b. Alter the session to set the TIME_ZONE parameter value to the time zone offset of

US/Pacific-New.

ALTER SESSION SET TIME_ZONE = '-8:00';

c. Display the CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP for this

session.

Note: The output might be different based on the date when the command is executed.

SELECT CURRENT_DATE, CURRENT_TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

d. Alter the session to set the TIME_ZONE parameter value to the time zone offset of

Singapore.

ALTER SESSION SET TIME_ZONE = '+8:00';

e. Display the CURRENT_DATE, CURRENT_TIMESTAMP, LOCALTIMESTAMP for this

session.

Note: The output might be different based on the date when the command is executed.

SELECT CURRENT_DATE, CURRENT_TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

3. Write a query to display the DBTIMEZONE and SESSIONTIMEZONE.

SELECT DBTIMEZONE,SESSIONTIMEZONE
FROM DUAL;

Introduction to Oracle9i: SQL A-56

Practice 16 Solutions (continued)

4. Write a query to extract the YEAR from HIRE_DATE column of the EMPLOYEES table for those

employees who work in department 80.

SELECT last_name, EXTRACT (YEAR FROM HIRE_DATE)
FROM employees
WHERE department_id = 80;

Introduction to Oracle9i: SQL A-57

Practice 17 Solutions

1. Write a query to display the following for those employees whose manager ID is less than 120:

– Manager ID

– Job ID and total salary for every job ID for employees who report to the same manager

– Total salary of those managers

– Total salary of those managers, irrespective of the job IDs

SELECT manager_id,job_id,sum(salary)
FROM employees
WHERE manager_id < 120
GROUP BY ROLLUP(manager_id,job_id);

2. Observe the output from question 1. Write a query using the GROUPING function to determine

whether the NULL values in the columns corresponding to the GROUP BY expressions are caused by

the ROLLUP operation.

SELECT manager_id MGR ,job_id JOB,
sum(salary),GROUPING(manager_id),GROUPING(job_id)
FROM employees
WHERE manager_id < 120
GROUP BY ROLLUP(manager_id,job_id);

3. Write a query to display the following for those employees whose manager ID is

less than 120 :

– Manager ID

– Job and total salaries for every job for employees who report to the same manager

– Total salary of those managers

– Cross-tabulation values to display the total salary for every job, irrespective of the

manager

– Total salary irrespective of all job titles

SELECT manager_id, job_id, sum(salary)
FROM employees
WHERE manager_id < 120
GROUP BY CUBE(manager_id, job_id);

Introduction to Oracle9i: SQL A-58

Practice 17 Solutions (continued)

4. Observe the output from question 3. Write a query using the GROUPING function to determine

whether the NULL values in the columns corresponding to the GROUP BY expressions are

caused by the CUBE operation.

SELECT manager_id MGR ,job_id JOB,
sum(salary),GROUPING(manager_id),GROUPING(job_id)
FROM employees
WHERE manager_id < 120
GROUP BY CUBE(manager_id,job_id);

5. Using GROUPING SETS, write a query to display the following groupings :

– department_id, manager_id, job_id

– department_id, job_id

– Manager_id, job_id

The query should calculate the sum of the salaries for each of these groups.

SELECT department_id, manager_id, job_id, SUM(salary)
FROM employees
GROUP BY
GROUPING SETS ((department_id, manager_id, job_id),
(department_id, job_id),(manager_id,job_id));

Introduction to Oracle9i: SQL A-59

Practice 18 Solutions

1. Write a query to display the last name, department number, and salary of any employee whose

department number and salary both match the department number and salary of any employee who

earns a commission.

SELECT last_name, department_id, salary
FROM employees
WHERE (salary, department_id) IN

(SELECT salary, department_id
FROM employees
WHERE commission_pct IS NOT NULL);

2. Display the last name, department name, and salary of any employee whose salary and commission

match the salary and commission of any employee located in location ID1700.

SELECT last_name, department_name, salary
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND (salary, NVL(commission_pct,0)) IN

(SELECT salary, NVL(commission_pct,0)
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND d.location_id = 1700);

3. Create a query to display the last name, hire date, and salary for all employees who have the same

salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

SELECT last_name, hire_date, salary
FROM employees
WHERE (salary, NVL(commission_pct,0)) IN

(SELECT salary, NVL(commission_pct,0)
FROM employees
WHERE last_name = 'Kochhar')

AND last_name != 'Kochhar';

4. Create a query to display the employees who earn a salary that is higher than the salary of
all of the sales managers (JOB_ID = 'SA_MAN'). Sort the results on salary from highest to

lowest.

SELECT last_name, job_id, salary
FROM employees
WHERE salary > ALL

(SELECT salary
FROM employees
WHERE job_id = 'SA_MAN')

ORDER BY salary DESC;

Introduction to Oracle9i: SQL A-60

Practice 18 Solutions (continued)

5. Display the details of the employee ID, last name, and department ID of those employees who live

in cities whose name begins with T.

SELECT employee_id, last_name, department_id
FROM employees
WHERE department_id IN (SELECT department_id

FROM departments
WHERE location_id IN

(SELECT location_id
FROM locations
WHERE city LIKE 'T%'));

6. Write a query to find all employees who earn more than the average salary in their departments.

Display last name, salary, department ID, and the average salary for the department. Sort by average
salary. Use alises for the columns retrieved by the query as shown in the sample output.

SELECT e.last_name ename, e.salary salary,
e.department_id deptno, AVG(a.salary) dept_avg

FROM employees e, employees a
WHERE e.department_id = a.department_id
AND e.salary > (SELECT AVG(salary)

FROM employees
WHERE department_id = e.department_id)

GROUP BY e.last_name, e.salary, e.department_id
ORDER BY AVG(a.salary);

7. Find all employees who are not supervisors.

a. First do this by using the NOT EXISTS operator.

SELECT outer.last_name
FROM employees outer
WHERE NOT EXISTS (SELECT 'X'

FROM employees inner
WHERE inner.manager_id =

outer.employee_id);

Introduction to Oracle9i: SQL A-61

Practice 18 Solutions (continued)

b. Can this be done by using the NOT IN operator? How, or why not?

SELECT outer.last_name
FROM employees outer
WHERE outer.employee_id
NOT IN (SELECT inner.manager_id

FROM employees inner);

This alternative solution is not a good one. The subquery picks up a NULL value, so the entire
query returns no rows. The reason is that all conditions that compare a NULL value result in
NULL. Whenever NULL values are likely to be part of the value set, do not use NOT IN as a
substitute for NOT EXISTS.

8. Write a query to display the last names of the employees who earn less than the average salary in

their departments.

SELECT last_name
FROM employees outer
WHERE outer.salary < (SELECT AVG(inner.salary)

FROM employees inner
WHERE inner.department_id

= outer.department_id);

9. Write a query to display the last names who have one or more coworkers in their departments with

later hire dates but higher salaries.

SELECT last_name
FROM employees outer
WHERE EXISTS (SELECT 'X'

FROM employees inner
WHERE inner.department_id =

outer.department_id
AND inner.hire_date > outer.hire_date
AND inner.salary > outer.salary);

10. Write a query to display the employee ID, last names of the employees, and department names of all

employees.

Note: Use a scalar subquery to retrieve the department name in the SELECT statement.

SELECT employee_id, last_name,
(SELECT department_name
FROM departments d
WHERE e.department_id =

d.department_id) department
FROM employees e
ORDER BY department;

Introduction to Oracle9i: SQL A-62

Practice 18 Solutions (continued)

11. Write a query to display the department names of those departments whose total salary cost is above
one-eighth (1/8) of the total salary cost of the whole company. Use the WITH clause to write this

query. Name the query SUMMARY.

WITH
summary AS (

SELECT department_name, SUM(salary) AS dept_total
FROM employees, departments
WHERE employees.department_id =

departments.department_id
GROUP BY department_name)
SELECT department_name, dept_total
FROM summary
WHERE dept_total > (

SELECT SUM(dept_total) * 1/8
FROM summary)

ORDER BY dept_total DESC;

Introduction to Oracle9i: SQL A-63

Practice 19 Solutions

1. Look at the following output. Is this output the result of a hierarchical query? Explain why or why

not.

a. Exhibit 1: This is not a hierarchical query; the report simply has a descending sort

on SALARY.

Exhibit 2: This is not a hierarchical query; there are two tables involved.

Exhibit 3: Yes, this is most definitely a hierarchical query as it displays the tree

structure representing the management reporting line from the EMPLOYEES table.

2. Produce a report showing an organization chart for Mourgos’s department. Print last names, salaries,

and department IDs.

SELECT last_name, salary, department_id
FROM employees
START WITH last_name = 'Mourgos'
CONNECT BY PRIOR employee_id = manager_id;

3. Create a report that shows the hierarchy of the managers for the employee Lorentz. Display his

immediate manager first.

SELECT last_name
FROM employees
WHERE last_name != 'Lorentz'
START WITH last_name = 'Lorentz'
CONNECT BY PRIOR manager_id = employee_id;

4. Create an indented report showing the management hierarchy starting from the employee whose
LAST_NAME is Kochhar. Print the employee’s last name, manager ID, and department ID. Give alias

names to the columns as shown in the sample output.

COLUMN name FORMAT A20

SELECT LPAD(last_name, LENGTH(last_name)+(LEVEL*2)-2,'_')

name,manager_id mgr, department_id deptno

FROM employees

START WITH last_name = 'Kochhar'

CONNECT BY PRIOR employee_id = manager_id

/

COLUMN name CLEAR

Introduction to Oracle9i: SQL A-64

Practice 19 Solutions (continued)

If you have time, complete the following exercises:

5. Produce a company organization chart that shows the management hierarchy. Start with the person at

the top level, exclude all people with a job ID of IT_PROG, and exclude De Haan and those

employees who report to De Hann.

SELECT last_name,employee_id, manager_id
FROM employees
WHERE job_id != 'IT_PROG'
START WITH manager_id IS NULL
CONNECT BY PRIOR employee_id = manager_id
AND last_name != 'De Haan';

Introduction to Oracle9i: SQL A-65

Practice 20 Solutions

1. Run the cre_sal_history.sql script in the Labs folder to create the SAL_HISTORY table.

@ \Labs\cre_sal_history.sql

2. Display the structure of the SAL_HISTORY table.

DESC sal_history

3. Run the cre_mgr_history.sql script in the Labs folder to create the MGR_HISTORY table.

@ \Labs\cre_mgr_history.sql

4. Display the structure of the MGR_HISTORY table.

DESC mgr_history

5. Run the cre_special_sal.sql script in the Labs folder to create the SPECIAL_SAL table.

@ \Labs\cre_special_sal.sql

6. Display the structure of the SPECIAL_SAL table.

DESC special_sal

7. a. Write a query to do the following:

– Retrieve the details of the employee ID, hire date, salary, and manager ID of those employees
whose employee ID is less than 125 from the EMPLOYEES table.

– If the salary is more than $20,000, insert the details of employee ID and salary into the
SPECIAL_SAL table.

– Insert the details of the employee ID, hire date, and salary into the SAL_HISTORY table.

– Insert the details of the employee ID, manager ID, and SYSDATE into the MGR_HISTORY

table.

INSERT ALL
WHEN SAL > 20000 THEN
INTO special_empsal VALUES (EMPID, SAL)
ELSE
INTO sal_history VALUES(EMPID,HIREDATE,SAL)
INTO mgr_history VALUES(EMPID,MGR,SAL)
SELECT employee_id EMPID, hire_date HIREDATE,
salary SAL, manager_id MGR
FROM employees
WHERE employee_id < 125;

Introduction to Oracle9i: SQL A-66

Practice 20 Solutions (continued)

b. Display the records from the SPECIAL_SAL table.

SELECT * FROM special_sal;

c. Display the records from the SAL_HISTORY table.

SELECT * FROM sal_history;

d. Display the records from the MGR_HISTORY table.

SELECT * FROM mgr_history;

8. a. Run the cre_sales_source_data.sql script in the Labs folder to create the

SALES_SOURCE_DATA table.

@ \Labs\cre_sales_source_data.sql

b. Run the ins_sales_source_data.sql script in the Labs folder to insert records into the

SALES_SOURCE_DATA table.

@ \Labs\ins_sales_source_data.sql

c. Display the structure of the SALES_SOURCE_DATA table.

DESC sales_source_data

d. Display the records from the SALES_SOURCE_DATA table.

SELECT * FROM SALES_SOURCE_DATA;

e. Run the cre_sales_info.sql script in the Labs folder to create the SALES_INFO table.

@ \Labs\cre_sales_info.sql

f. Display the structure of the SALES_INFO table.

DESC sales_info

g. Write a query to do the following:

– Retrieve the details of the employee ID, week ID, sales on Monday, sales on Tuesday, sales
on Wednesday, sales on Thursday, and sales on Friday from the SALES_SOURCE_DATA

table.

– Build a transformation such that each record retrieved from the SALES_SOURCE_DATA

table is converted into multiple records for the SALES_INFO table.

Hint: Use a pivoting INSERT statement.

Introduction to Oracle9i: SQL A-67

Practice 20 Solutions (continued)

INSERT ALL
INTO sales_info VALUES (employee_id, week_id, sales_MON)
INTO sales_info VALUES (employee_id, week_id, sales_TUE)
INTO sales_info VALUES (employee_id, week_id, sales_WED)
INTO sales_info VALUES (employee_id, week_id, sales_THUR)
INTO sales_info VALUES (employee_id, week_id, sales_FRI)
SELECT EMPLOYEE_ID, week_id, sales_MON, sales_TUE,
sales_WED, sales_THUR,sales_FRI FROM sales_source_data;

h. Display the records from the SALES_INFO table.

SELECT * FROM sales_info;

9. a. Create the DEPT_NAMED_INDEX table based on the following table instance chart. Name the

index for the PRIMARY KEY column as DEPT_PK_IDX.

CREATE TABLE DEPT_NAMED_INDEX
(deptno NUMBER(4)
PRIMARY KEY USING INDEX
(CREATE INDEX dept_pk_idx ON
DEPT_NAMED_INDEX(deptno)),
dname VARCHAR2(30));

b. Query the USER_INDEXES table to display the INDEX_NAME for the

DEPT_NAMED_INDEX table.

SELECT INDEX_NAME, TABLE_NAME
FROM USER_INDEXES
WHERE TABLE_NAME = 'DEPT_NAMED_INDEX';

COLUMN Name Deptno Dname

Primary Key Yes

Data type Number VARCHAR2

Length 4 30

Introduction to Oracle9i: SQL A-68

Practice D Solutions

1. Write a script to describe and select the data from your tables. Use CHR(10) in the select list with

the concatenation operator (||) to generate a line feed in your report Save the output of the script
into my_file1.sql. To save the file, select the SAVE option for the output, and execute the code.

Remember to save the file with a .sql extension. To execute the my_file1.sql, browse to

locate the script, load the script, and execute the script.

SET PAGESIZE 0

SELECT 'DESC ' || table_name || CHR(10) ||
'SELECT * FROM ' || table_name || ';'

FROM user_tables
/
SET PAGESIZE 24
SET LINESIZE 100

2. Use SQL to generate SQL statements that revoke user privileges. Use the data dictionary views

USER_TAB_PRIVS_MADE and USER_COL_PRIVS_MADE.

a. Execute the script \Labs\privs.sql to grant privileges to the user SYSTEM.

b. Query the data dictionary views to check the privileges. In the sample output shown, note that
the data in the GRANTOR column can vary depending on who the GRANTOR is. Also the last

column that has been truncated is the GRANTABLE column.

COLUMN grantee FORMAT A10
COLUMN table_name FORMAT A10
COLUMN column_name FORMAT A10
COLUMN grantor FORMAT A10
COLUMN privilege FORMAT A10
SELECT *
FROM user_tab_privs_made
WHERE grantee = 'SYSTEM';

SELECT *
FROM user_col_privs_made
WHERE grantee = 'SYSTEM';

Introduction to Oracle9i: SQL A-69

Practice D Solutions (continued)

c. Produce a script to revoke the privileges. Save the output of the script into my_file2.sql. To

save the file, select the SAVE option for the output, and execute the code. Remember to save the

file with a .sql extension. To execute the my_file2.sql, browse to locate the script, load the

script, and execute the script.

SET VERIFY OFF
SET PAGESIZE 0

SELECT 'REVOKE ' || privilege || ' ON ' ||
table_name || ' FROM system;'
FROM user_tab_privs_made
WHERE grantee = 'SYSTEM'
/
SELECT DISTINCT 'REVOKE ' || privilege || ' ON ' ||

table_name || ' FROM system;'
FROM user_col_privs_made
WHERE grantee = 'SYSTEM'
/

SET VERIFY ON
SET PAGESIZE 24

Introduction to Oracle9i: SQL A-70

